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Abstract 
 
 Proteins play a critical role in nearly every biological activity. In consequence, 
organismal health and homeostasis often hinges on the ability of intracellular regulatory 
systems to sustain the quality and function of these diverse, structurally complex 
macromolecules. Correct protein function depends on correct form, and during periods of 
destabilizing cellular stress, protein quality is managed in part by the heat shock 
response, which acts to support, isolate, and reform new or damaged proteins, and in part 
by the autophagic recycling of abnormal proteins, cytotoxic protein aggregates, and 
terminally damaged organelles. We conducted a pooled analysis of available research in 
humans and rodents regarding heat shock and autophagic activity through the unique 
proteostatic challenges presented by acute exercise and the post-exercise progression 
from catabolism to anabolism. This analysis reinforces a model of regulatory 
coordination between these protein management pathways, offering interspecies support 
for an Hsp70-moderated transition away from the presiding catabolic influence of 
autophagy in the immediate post-exercise window, toward an anabolic phase of 
restoration and remodeling. This relationship has already been demonstrated with direct 
human cellular research, and may help shed light on the molecular underpinning of 
epidemiological associations between health and physical activity. Differential responses 
were also observed in these two primary proteostatic systems according to exercise 
intensity and tissue of origin, which may have important implications for research design, 
and perhaps eventually for exercise prescription. 
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Chapter 1 
 

Review of Literature 
 

The purpose of this chapter is to:  

1) Outline proteomics, alongside the general importance of, and challenges to, 
intracellular proteostasis. 

2) Summarize the respective contributions of autophagy and the heat shock response 
to cellular proteostasis, as well as the regulatory pathways understood to 
coordinate their operation. 

3) Evaluate available research regarding the significance of autophagic and heat shock 
processes to whole-organism health and disease. 

4) Place a special focus on the coordination of these processes in mediating the unique 
proteostatic challenges presented by physical activity in skeletal muscle.  

 
Proteins, Proteomics, and Proteostasis 

 As advancing technology and intense research effort have combined to enhance 

our understanding of genetics in recent decades,1 academic interest has begun to shift 

from a narrow focus on the genetic blueprint, a sometimes-overwhelming compendium 

containing all necessary information for the lifecycle of a single organism, to a 

complementary study of the proteins expressed from those instructions, and how these 

proteins interact on a macro scale.1,2 The specific complement of proteins expressed by a 

genome at the whole organism, tissue, or cellular level has come to be known as a 

proteome, while proteomics refers to any post-genomic study of such a protein assembly, 

from the structural to interactional level.1,2 Central to this emerging field of research is an 

investigation into the various mechanisms by which these protein ecosystems are able to 

maintain an adaptive, functional equilibrium in the face of acute and chronic cellular 

stressors.3 Maintaining the operational status quo of intracellular protein systems through 

a responsive cycle of synthesis, maintenance, and elimination is a process termed protein 

homeostasis, or proteostasis, and is accomplished by a tightly-regulated network of 

protein management pathways responsible for overseeing the conformational integrity, 

interactive capability, physical location, overall concentration, and eventual catabolism of 
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individual proteins comprising the proteome.3,4 This formidable level of regulatory 

oversight is fundamentally necessitated by the intricacy, delicacy, and diversity of protein 

species; as well as the dynamic environment in which they operate, and the complexly 

evolving needs of the physiological system they support.3,4  

 Unlike DNA molecules, which are intrinsically stabilized by the structural 

symmetry of their complementary base pairs, and only required to perform localized 

folding (coiling), proteins are manufactured in an inherently disordered arrangement, and 

often require complex folding maneuvers to obtain a functional conformation.5 Moreover, 

most mammalian cells rely on more than 10,000 individual protein varieties for normal 

function, each synthesized as linear polypeptide chains that can extend to several 

thousand amino acids in length.5 In 1969, Cyrus Levinthal noted that even a simple, 

theoretical protein consisting of 150 amino acids contains enough potential variation 

about the individual peptide bonds in its primary sequence to allow an estimated 10300 

disparate secondary conformations, while completely denatured simple proteins observed 

in vitro are reliably able to reestablish a fully-functional, native conformation in a matter 

of seconds.6 Given that these polypeptide chains could not possibly evaluate all, or even 

most, of the available configurations in a space of seconds, the speed at which they are 

able obtain a correct, complex structural organization from their most disordered state has 

been termed Levinthal’s paradox, and progress toward elucidation has required the 

cooperative effort of molecular biologists, chemists, physicists, and mathematicians.5 

 More than forty years later, theories regarding protein folding have evolved 

considerably, but remain central to molecular biology.5,7 At a basic level, the scientific 

community has established that linear peptide chains are driven toward progressively 
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more stable intermediate configurations by the formation of non-covalent bonds and 

sequestering, hydrophobic interactions between individual amino acids at various points 

in the peptide sequence.5 Given optimal conditions, folding is theorized to proceed along 

these lines until the primary protein backbone approaches its lowest free-energy state, 

representing the molecule’s most stable, or ‘native’ configuration.4,7,8 In real world 

conditions, conformational entropy, kinetic or enthalpic barriers, and the disruptive 

influences of a crowded, fluctuating intracellular environment often present nascent 

proteins with considerable opposition to both the obtainment and maintenance of a stable, 

functional native state.4,5,7,8  

 These ineluctable forces acting to confound the optimal progression of protein 

folding lead to a ‘rugged’ free energy landscape, as polypeptide chains are often diverted 

to sub-optimal intermediate forms, which are then required to overcome substantial 

entropic and/or enthalpic barriers before returning to the path toward a stable, native 

configuration, Figure 1.5,7-9 These misfolded intermediates are not only lacking proper 

function, they also frequently expose unshielded hydrophobic residues, leaving them 

more vulnerable to damaging non-native interactions with other nearby proteins and 

intermediate forms.9 Left unchecked, these non-native interactions can lead to the 

formation of dangerous protein aggregates, the accumulation of which has been 

associated with a growing number of pathologies, including Alzheimer’s disease, 

Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis.3,9 
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Protein Management Systems 

 Considering the in vivo challenges confronting partially folded proteins in their 

journey toward the native state, as well as the logistical importance of these nascent 

forms achieving functional status, and the danger to nearby molecules that intermediate 

conformations can represent; it is not surprising that a network of ancillary molecules has 

developed to help smooth progress through the transitional phases of protein folding, 

while intracellular proteolytic systems have developed to sequester and destroy cytotoxic 

aggregate structures. In fact, numerous pathways and hundreds of individual proteins 

participate in maintaining these aspects of proteostasis.4 Some of the most noteworthy 

and best characterized of these proteostatic mechanisms include the system of molecular 

chaperones, which facilitate proper protein folding while counteracting aggregation, and 

the process of autophagy, which is one of the primary intracellular mechanisms 

Figure 1: The rugged free-energy landscape of protein folding and aggregation. 
Graphic reprinted without permission from Vabulas et al. 2010.9 
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responsible for the breakdown of irreparably damaged or aggregated protein 

structures.4,10 

Molecular Chaperones 

 The molecular chaperones, as a class, are any of a structurally unrelated group of 

proteins found to interact with partially-folded intermediate conformations to limit further 

non-native interaction, enhance stability, or otherwise facilitate a correct progression to 

the native state without becoming incorporated in the final structure,  

Figure 2.4  

 

 These ancillary proteins are evolutionarily ancient and highly conserved, with 

varieties expressed in every form of life.9,11 Approximately 20-30% of all proteins in 

Figure 2: Molecular chaperones facilitate proper protein folding and 
counteract aggregation.  

Graphic reprinted without permission from Hartl et al. 2011.4 
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modern mammalian cells seem to be altogether incapable of correct de novo folding 

without the assistance of these facilitators.4 In line with a broad course of development, 

numerous classifications or families of molecular chaperones exist, operating in 

conjunction to support the protein folding process in different ways.4,9 Many chaperones 

have come to be known as heat shock proteins, or HSPs, because they are inducible by 

heat treatment, though this can be misleading, as any comparable form of cellular stress 

leading to sufficient protein damage will also upregulate the expression of these 

chaperones, including cold exposure, shifts in pH, osmolality fluctuations, or the stress of 

vigorous exercise in muscle tissue.4,9,12 These HSPs are often classified according to their 

molecular weight in kilodaltons, with the Hsp70 (70 kDa heat shock proteins), Hsp90 (90 

kDa heat shock proteins), and chaperonin families being the most prominently involved 

in the de novo folding of newly synthesized polypeptides and the amelioration of proteins 

that have become damaged.4,9 These each depend on ATP as well as regulatory 

interactions with various cofactors and supporting HSP families to perform repetitive, 

transient binding and enclosing maneuvers when exposed to unshielded hydrophobic 

residues in nearby intermediate structures.4,9 Of the three families, the chaperonins and 

Hsp90 typically act in a more specialized capacity downstream of Hsp70.9 As such, 20% 

of proteins folding de novo are estimated to require the assistance of Hsp70, while an 

estimated 10% are passed by Hsp70 to the chaperonins for further modification, and only 

a small but vital fraction are eventually transferred Hsp90.4,9  

The Hsp70 Family 

 The Hsp70 family is present in all cells except certain archaea, and includes both 

stress-inducible Hsp70, and the constitutively expressed homologue Hsc70 (heat shock 
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70 kDa protein 8, or HSPA8).9,11 These proteins are not identical, and have been reported 

to differentially impact certain cellular processes, but are generally accepted to function 

similarly in their roles regarding protein folding and transport.13 The Hsp70 class 

employs a less complicated interaction with folding intermediates than the other major 

chaperone families, and offers a broad first line of protection against misfolding or 

aggregation, while also often playing a cooperative transport role linking to other 

chaperone systems and proteolytic pathways.4,9,14  

 When free in situ, Hsp70 adopts an ‘open’ conformation with the allosteric 

binding of ATP, and becomes available for interaction with partially-folded 

polypeptides.4,9,11 Transient binding of Hsp70 is then initiated as a ß-sandwich segment 

within the molecule recognizes an approximately seven-residue exposed segment 

presenting concentrated hydrophobic residues in nearby intermediate structures.4,9,11 With 

the hydrolysis of ATP, the ß-sandwich segment performs a conformational shift, 

temporarily trapping a portion of the polypeptide chain.4,9,11 The speed of the ATPase 

reaction is accelerated by Hsp40, also called DnaJ, a supportive Hsp family that can 

recruit Hsp70 to viable substrates, and may also assist with transporting damaged 

proteins to catabolic pathways.4,15 Nucleotide exchange factors (NEFs) later catalyze the 

removal of ADP from the Hsp70 complex, allowing ATP to rebind and release the 

trapped portion of the polypeptide chain, leading to a cyclical opening and closing 

sequence in the continued presence of exposed substrate.4,9,11  

 The closed conformation of Hsp 70 protects vulnerable hydrophobic portions of 

the intermediate structure from more damaging non-native interactions leading to 

aggregation, and the release period often proves sufficient for fast folding proteins to 
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establish their native state.4,11 Moreover, the repeated binding sequence that occurs when 

folding remains stalled provides continued protection for a flexible period, allowing 

transport of intractable or irreparable structures, and offering time for damaged or de 

novo intermediates to recover from temporary kinetic confinement or environmental 

stressors.4,9  

The Chaperonins                                                                                                    

 Unlike simpler structures, complex proteins with slower folding trajectories may 

not be able to attain a stable conformation with this level of assistance alone.9 These can 

be transferred to the chaperonins for more specialized attention by Hsp70 or 

intermediates like prefoldin.4,9 The chaperonins are widely distributed, and divided into 

two classes: class 1, called the Hsp60 family or GroEL, are expressed in eukaryotic 

mitochondria and bacteria, while class 2, called TRiC or CCT, are expressed in 

eukaryotic cytosol and some archaea.4,9 As large (~800-900 kDa) double-ringed 

structures, the chaperonins act alone (TRiC), or in conjunction with supportive 

Hsp10/GroES chaperones (Hsp60/GroEL), to partially or fully enclose intermediate 

structures, curtailing non-native interaction and creating a stable folding environment.4,9 

The chaperonins are capable of globally encapsulating structures up to 60 kDa, though 

some TRiC substrates are considerably larger, indicating that these chaperonins may 

assist with the folding of individual domains in larger protein structures.4,9 

 In a series ATP-dependent conformational shifts, the chaperonins construct a 

cage-like cavity, the interior of which is prominently lined with polar residues to create a 

net negative charge.9,16 The polar surfaces of the enclosure’s inner walls attract ordered 

water molecules, which is hypothesized to facilitate folding by forcing polypeptide chains 
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to bury hydrophobic residues.9,16 The cavity remains stable for the time required to 

hydrolyze ATP, approximately 10-15 seconds in the case of Hsp60/GroEL, but 

potentially much longer for TRiC, offering a complex proteins a substantial period for 

uninterrupted folding.4,9,16 As with Hsp70, enclosure and release occurs repeatedly in the 

continued presence of exposed hydrophobic substrate, leading to a cycle that may help 

dislodge maladroit folding patterns and resolve kinetic trapping within the molecule in a 

process called ‘iterative annealing’.9,17 As successive cycles of chaperonin confinement 

then also limit the conformational disorder of encapsulated polypeptides, these 

chaperones can assist partially-folded intermediates in overcoming both entropic and 

enthalpic folding barriers, in a process that may considerably extend the range of 

environmental conditions in which some complex proteins are able to successfully reach 

a native conformation.4,9,17 

The Hsp90 System 

 Compared with other major molecular chaperone pathways, the Hsp90 system has 

proved difficult to elucidate.4,18 This is because Hsp90 not only acts to stabilize protein 

folding, but also seems to sit at the center of a proteostatic network with diverse and 

critical influence, having been reported to impact apoptosis, cell-cycle signaling, mitotic 

signal transduction, telomere upkeep, vesicular transport, innate immunity, and targeted 

proteolysis.4,9,18 Like Hsp70 and the chaperonins, the pincher-like dimer structure of 

Hsp90 performs cyclic, ATP-driven conformational shifts to assist protein folding.4,9,18 

Unlike most nucleotide-binding proteins, however, interaction with ATP does not fasten 

Hsp90 into a rigid conformation, instead shifting the conformational equilibrium toward a 

more closed operative conformation.18 The unusual structural flexibility is likely 
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necessitated by diversity of Hsp90’s interactions, which involve numerous substrates, 

facilitators, and co-chaperones.4,18 Moreover, unlike other chaperones, Hsp90 does not 

seem to bind directly with fully denatured polypeptide chains, instead apparently 

restricting interaction to partially-formed intermediate states, suggesting that Hsp90 has a 

specialized role assisting certain complex proteins with successful stabilization late in 

their folding trajectories.18 Many of these targets are critical signal transducers whose 

inherent instability is central to their roles as molecular switches, and Hsp90’s ability to 

stabilize these complex molecules may have acted as a vital evolutionary capacitor, by 

allowing cells to successfully integrate unstable mutant proteins into complex cell 

signaling networks.4,19 

The Heat Shock Response: Regulatory Control 

 As has been mentioned, cellular stress leading to significant protein denaturing 

instigates an upregulation of many molecular chaperones, including Hsp70 and 

Hsp90.4,9,20 Main transcriptional control of this stress response has been traced to so 

called heat shock factors (HSFs), three of which are expressed in mammals.9,20,21 Of these 

three, HSF1 appears to be the primary regulator of stress-induced HSP transcription, 

sometimes operating in conjunction with HSF2. HSF2 is poorly characterized compared 

to HSF1, and seems to play a role in cellular differentiation and development, but can 

also be activated when the ubiquitin-dependent proteolytic system is inhibited, indicating 

an induced response to the buildup of damaged proteins.20 Little is also known about 

HSF4, which is tissue specific, and has only been seen to play a role in the maintenance 

and development of specialized sensory tissues.9,21  
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 In an elegant negative feedback loop, HSF1 is held inert in the cytosol during 

routine cellular operation by the very chaperones it helps to regulate.9,20 As stress 

denatured proteins attract Hsp90 and Hsp70 away from inactive complexes with HSF1 

monomers, the monomers are released into the cytosol.9,20 HSF1 monomers then 

trimerize and progress to the nucleus, where the trimer is modified and activated, 

initiating transcription of numerous HSP genes, including those responsible for Hsp70 

and Hsp90.9,20 As the concentration of damaged proteins diminishes, unoccupied Hsp70 

and Hsp90 begin to accumulate, eventually binding and inactivating HSF1, Figure 3.9,20   

Figure 3: Transcriptional regulation of heat shock proteins by HSF1.  
(1) Under normal conditions HSF1 exists as an inert monomer in a complex with Hsp90 and Hsp70. (2) 

Cellular stress increases the amount of denatured proteins in the cytoplasm. (3) Denatured proteins bind to 
Hsp70 and Hsp90, resulting in the displacement of HSF1 (4). (5) HSF1 then trimerizes and translocates to 

the nucleus where it undergoes a series of posttranslational modifications, including phosphorylation (6). (7) 
Activated HSF1 trimer induces the transcription of a number of hsp genes, resulting in the translation of 

HSPs, including Hsp90 and Hsp70 (8). (9) The increased cellular concentration of these chaperones in turn 
inactivates HSF1 by binding to monomeric or trimeric forms of HSF1.  

N, native protein; U, unfolded protein. 
Graphic reprinted without permission from Vabulas et al., 2010.9 Caption quoted directly. 
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 FOXO (forkhead box O protein) overexpression has also been demonstrated to 

upregulate inducible HSPs including Hsp40, Hsp70, and Hsp90 in drosophila muscle, 

while Hsp70 overexpression in rat soleus has been shown to directly downregulate 

FOXO activity.22,23 This may represent another negative feedback cycle, and, given 

FOXO’s central role as a proteolytic regulator, hints at complex regulatory layering in 

need of further illumination.22-24 

The Intracellular Paths to Proteolysis 

 Of course, despite the best efforts of molecular chaperones, many damaged 

proteins cannot be successfully refolded, and the safe disposal of these structures 

becomes a priority. To accomplish this, the autophagic pathways operate in conjunction 

with the ubiquitin−proteasome system (UPS), and perhaps the calpain proteases, to 

coordinate the intracellular degradation of aggregated protein structures and terminally 

damaged proteins or organelles, as well as the timely removal of proteins playing a 

transient regulatory capacity, or those found to be in surplus.25-27 These pathways are each 

tightly regulated, as either over- or under-activation of these systems has been linked to a 

wide spectrum of pathology, from arthritis, myopathy, and neurodegenerative disease, to 

diabetes, cancer formation, and immune dysfunction.25-27  

 The calpain family is a group of cytosolic proteases activated by interaction with 

calcium ions.25,28 This pathway is ancient and ubiquitously distributed, but remains poorly 

understood, largely because members of the calpain family seem to occupy specialized 

regulatory roles.28,29 Accordingly, the calpain system seems to display only limited 

proteolytic capability, and is able to directly recognize specific substrates rather than 
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relying on molecular tagging systems, as is the case for autophagy and the UPS.28,29 As 

such, the role of this pathway is likely oriented more toward cellular signaling and 

regulation than straightforward protein degradation, with protease capabilities being 

employed for bio-modulation of existing protein structures, rather than full-scale protein 

dissasembly.28,29 

 The ubiquitin−proteasome system is, in contrast, a robust and well-characterized 

proteolytic pathway, acting in complement to autophagy as a principal regulator of 

intracellular protein degradation in eukaryotic cells.26,30,31 This system is understood to 

selectively and individually target misfolded or malformed polypeptides, whereas 

autophagy degrades larger protein aggregates and organelles, often in a less specific 

fashion.32 Additionally, while autophagic systems reduce protein substrate to individual 

amino acids, the UPS pathway renders proteins into short (3-25 AA) peptide sequences, 

which may later undergo further lysosomal degradation.31  

 Proteins are selectively marked for UPS-mediated catabolism through binding 

with ubiquitin, a 76-AA ancillary protein acting as a molecular tagging system.30-32 While 

a single ubiquitination seems sufficient to allow targeted proteins entry into the UPS 

pathway, the binding of multiple ubiquitin molecules, either individually or as 

polyubiquitin chains, may help regulate subsequent processing.31 Ubiquitinated proteins 

are then transported, somewhat mysteriously, to a large, barrel-like (~2.5 MDa) protease 

organelle known as a ‘proteasome’, where actual proteolysis occurs.30,31 Proteasomes, 26S 

in eukaryotes, are widely distributed throughout the nucleus and cytoplasm, also allowing 

the UPS to play a substantial role in overseeing cell signaling, by acting to rapidly 

degrade various transient regulatory proteins.31,32 
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Autophagy, and the lysosome-dependent pathways 

 The umbrella term autophagy means ‘self eating’, and can be applied to numerous 

separate lysosome-dependent cellular processes playing different roles in protein 

catabolism.26 These processes are novel in comparison to the ancient chaperones, and are 

only known to exist in eukaryotic cytoplasm, though they are ubiquitous in eukaryota.33 

Currently three primary types of autophagy pathways are best characterized, these being 

more specifically described as macroautophagy, microautophagy, and chaperone-

mediated autophagy.26,34 This interpretation is clearly limited, however, as more than a 

dozen autophagic processes have been delineated, based largely on the type of structures 

being degraded and how they are selected, along with minor regulatory and mechanistic 

variations.35,36  

Macroautophagy 

 Macroautophagy is a bulk catabolic process limited to eukaryotic cytosol, which 

operates by engulfing a portion of the cytoplasm in a double-membrane vesicle called an 

autophagosome.33,34,37 Engulfment then leads to indiscriminate degradation of the 

autophagosome and its contents when this structure subsequently fuses with a specialized 

organelle containing catabolic enzymes, called a lysosome, Figure 4.34,37 The high 

capacity of this proteolytic pathway is ideally suited for urgent, short-term energy 

provision, and macroautophagy is upregulated during even relatively brief periods of 

nutrient deprivation (1-3 hours), representing the primary intracellular pathway 

responsible for protein catabolism in conditions of cellular energy-deficit.34 This process 

is also upregulated in times of cellular stress, being crucial in the removal of large, 

pathogenic protein aggregates, damaged organelles, or even invading microbes.33,34 
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 Macroautophagy is a complex, multistage process, beginning with the activation 

of various autophagy-related proteins, known as Atgs.36,37 In mammals, induction of 

macroautophagy is thought to depend on the activation of Atg1, comprising Unc-51-like 

kinases 1 or 2 (ULK1 or ULK2), which then forms a complex with Atg13.36,37 Activation 

of these proteins initiates a nucleation process, as requisite proteins and lipids are 

conscripted and locally concentrated for assembly of the autophagosome membrane, 

called a phagophore in the early stages of construction.36,37 The mechanisms underlying 

this nucleation remain somewhat uncertain, but successful phagophore formation in 

mammals is known to require phosphatidylinositol 3-phosphate (PI3P), acting together 

Figure 4: Schematic model of macroautophagy.  
Autophagy occurs at basal levels and can be induced (1) by certain environmental or intracellular cues. The 

process begins with the nucleation step (2) in which a membrane core of unknown origin, termed the 
phagophore or isolation membrane, sequesters a portion of cytoplasm. The phagophore expands (3), 

probably through the vesicle-mediated addition of membrane (not shown) to generate the double-membrane 
autophagosome. Upon completion, the autophagosome outer membrane fuses (4) with the lysosome, 
releasing the inner single-membrane vesicle. The autophagic body is broken down (5) by lysosomal 

hydrolases and the resulting macromolecules are released back into the cytosol via membrane permeases 
(6) for reuse in the cytosol in catabolic or anabolic reactions. The steps of cargo recognition and packaging 

needed for specific types of autophagy are not depicted.  
Graphic reprinted without permission from Mizushima et al., 2007.34 Caption quoted directly. 
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with Atg14, Beclin 1, and a variety of other ancillary proteins to form several regulatory 

complexes, acting either to promote or inhibit continuation of the process, depending on 

arrangement.36,37  

 Membrane expansion and autophagosome completion then depend on ubiquitin-

like conjugation systems centered on Atg8, called LC3 in mammals, and Atg12.36,37 LC3 

and Atg12 are ubiquitin-like proteins which are conjugated with 

phosphatidylethanolamine and Atg5, respectively, in the developing autophagosome 

membrane through a series of reactions catalyzed by Atg7, Atg10, Atg3, and Atg4.37 

Once the autophagosome is successfully matured, it finds and fuses with a lysosome to 

form a so called ‘autolysosome’, in a process leading to the degradation of the 

autophagosome structures and contents by lysosomal hydrolases.36,37 Finally, the 

macromolecular end-products are released back into cytosol through specialized 

permeases in the lysosomal membrane, where they become available for catabolic energy 

provision or novel anabolic processes.34,37  

Chaperone-Mediated Autophagy 

 Chaperone-mediated autophagy (CMA) is a more selective process, in which 

individual proteins are targeted through specific amino acid motifs, and delivered directly 

to the lysosome.26,38 This is the secondary autophagic pathway upregulated in response to 

nutrient deprivation, being induced subsequent to macroautophagy in longer (8-10 hour) 

periods of starvation.34,38 This system is also capable of regulatory modulation in a 

manner similar to the UPS, through selective degradation of specific regulatory 

proteins.38 Aside from these specialist roles, CMA also provides an efficient pathway for 
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the catabolism of surplus, damaged, or aberrant proteins, and is upregulated in response 

to denaturing stressors.38  

 CMA begins with the assistance of constitutively-expressed Hsc70, which 

recognizes and binds CMA-designated protein substrates through a specific amino acid 

motif, usually beginning with glutamine, which is then followed successively by a 

positively charged residue, a hydrophobic residue, a negatively charged residue, and 

finishes with either a positive or hydrophobic finale.35,38 These motifs are often 

uncovered in protein structures following damage, misfolding, or multi-unit protein 

disassembly, and because this unit is based on a sequence of electrical charges, an 

incomplete motif can be completed through post-translational modification, with charges 

added to existing partial sequences by phosphorylation or acetylation.38  

 Once successfully bound, the Hsc70/protein complex proceeds directly to the 

lysosome, where the protein moiety interacts with the cytosolic portion of lysosome-

associated membrane protein type 2A (LAMP-2A).38 Once this occurs, the LAMP-2A 

monomer begins to assemble a complex for translocation of the substrate into the 

lysosomal lumen, while the waiting protein is unfolded prior to entry.35,38 Both of these 

processes are facilitated by the molecular chaperones, with Hsp90 stabilizing the LAMP-

2A complex during formation, and Hsc70 working with co-chaperones to unfold the 

candidate protein for translocation.35,38 Once the protein has been sufficiently unfolded, it 

is transferred across the membrane by the LAMP-2a complex, which is subsequently 

disassembled to allow binding of novel substrate.35,38 
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Microautophagy 

 Despite decades of research, microautophagy remains the most mysterious of the 

major autophagic pathways, particularly in mammals.39,40 While much of the evidence 

regarding microautophagy comes from yeast, the process is generally characterized as a 

direct invagination of the lysosomal membrane, which encloses a small portion of the 

nearby cytosol to form a self-contained ‘endosome’ that is then degraded along with its 

constituents upon arrival at the lysosomal lumen.39,40 Much regarding the regulatory 

control and mechanistic underpinning of microautophagy remains unclear, though it 

appears capable of both bulk and selective substrate uptake.39,40 While evidence suggests 

that this pathway is operational in mammals, its level of physiological importance in 

comparison to macroautophagy and CMA remains in need of elucidation.39,40 

Autophagy: Regulatory Control 

 Macroautophagy is the most common and best characterized of the autophagic 

processes, and will serve as the focus of following sections, being referred to hereafter 

simply as autophagy.33,37 Significant progress has been made in recent years to advance 

empirical insight into the regulatory control of autophagic pathways, though many 

questions remain to be answered.37,41 Transcriptional control of autophagy is orchestrated 

by a complex series of dynamically interactive metabolic signaling pathways, ultimately 

overseen by protein kinase B, (also known as Akt and PKB), and adenosine 

monophosphate-activated protein kinase (AMPK) through their downstream effectors, 

mammalian target of rapamycin (mTOR), and FoxO.42,43 Akt responds to growth factors 

such as insulin and insulin-like growth factor 1 (IGF-1), and generates signals favoring 

anabolism and energy expenditure.43 Conversely, AMPK is sensitive to nutrient scarcity, 
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and activates pathways favoring catabolism and energy conservation.44 These regulators 

can be thought of as acting in coordinated opposition to maintain a careful balance 

between protein synthesis and degradation in response to constantly fluctuating metabolic 

signals, Figure 5.10   

 

 

 As mentioned previously, induction of autophagy is initially thought to be 

instigated through the activation of Atg1, called ULK1 in mammals.36,44 Under 

conditions promoting catabolism and energy conservation, activation of ULK1 through 

direct phosphorylation by AMPK leads to an upregulation of autophagy.44 Under 

conditions favoring anabolism, activation of Akt leads to an upregulation of mTOR 

activity, precipitating the inhibitory phosphorylation of ULK1 by mTOR complex 1, 

Figure 5: Overview of autophagic regulatory pathways.  
Green lines indicate activation, red lines indicate inhibition.  

Adapted and reprinted without permission from Dokladny et al. 2015.10 
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curtailing autophagy.44 AMPK activation also prompts an increase in FoxO activity, 

while FoxO is corresponding inhibited by activated Akt.45 FoxO, in turn, is responsible 

for the transcriptional induction of numerous autophagy-related genes, including those 

accountable for several proteins regulating nucleation and expansion of the phagophore, 

such as microtubule-associated protein 1 light chain (LC3), Becilin-1, and Bnip3.42,43 

Some research suggests that this inhibition of FoxO is actually the major pathway by 

which Akt downregulates autophagic activity, and much remains to be determined 

regarding the nuanced integration of input ultimately governing these multifarious 

signaling pathways.43  

Implications for Health and Disease:  

 Dysregulation of these proteostatic systems has serious implications for whole 

organism health and homeostasis.3,4,26,38,46-52 Knockout research in animals has revealed 

that the ability to successfully navigate proteostatic challenges proves indispensable from 

the earliest stages of growth and development, with several projects reporting that mice 

bred without the ability to express vital autophagy-related proteins such as Atg5 and Atg7 

are unable to survive beyond a few days of their birth.53,54  

 Moreover, mounting evidence indicates that these protein management systems 

are central to the survival and normal function of individual tissues, particularly those 

composed of post-mitotic cells.34,52 Mature, non-dividing cells like neurons and skeletal 

muscle fibers are finite in adult mammals, and their survival depends on the ability of 

these proteostatic mechanisms to control protein quality throughout the life cycle.34,52  

 Mice born with defects specifically preventing normal autophagic activity in 

skeletal muscle have been repeatedly shown to experience severe muscle wasting, with 
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inspected muscle fibers exhibiting severely disorganized muscle structure, alongside an 

assemblage of protein aggregates and damaged or defective organelles, the accumulation 

of which eventually leads to cell death.55-57  

 Several studies in cell cultures have shown that inhibition of autophagy in neuron 

rapidly leads to an accumulation of aggregated protein structures, including the tau 

aggregates associated with Alzheimer’s disease and similar neurodegenerative disorders, 

eventually causing cytotoxicity and cell death.58,59 In contrast, research in drosophila has 

provided evidence that upregulation of autophagy accelerates the destruction of both 

these mutant tau aggregates and the aberrant huntingtin proteins associated with 

Huntington’s disease, reducing cellular toxicity.60 

 In humans, numerous devastating myopathies have been traced to genetic defects 

impairing intramuscular autophagic pathways.61-63 Danon disease has been shown to be 

precipitated by lack-of-function mutations in the gene responsible for LAMP-2, which 

plays a crucial role in chaperone mediated autophagy.61,64 Pompe disease is caused by the 

inherited deficiency of a key lysosomal enzyme, acid α-glucosidase, which leads to an 

accumulation of the intended substrate, glycogen, within the lysosome, impairing normal 

lysosomal function.62,65 Similarly, X-linked myopathy with excessive autophagy 

(XMEA) is tied to mutations in the VMA21 gene, which lead to deficient activity in 

lysosomal hydrolases, and pathological accumulation of intended substrate.63  

 More generally, a normal age-related decline in autophagic activity has been 

linked to sarcopenia, the ubiquitous loss of skeletal muscle mass with age.47,66 

Conversely, enhanced autophagy function is being increasingly linked to life span 
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enhancement, and has been shown to exert direct control over longevity in numerous test 

organisms, including S. cerevisiae, C. elegans, and D. melanogaster.48,49 

 Similarly, research in C. elegans reported that inhibition of HSF1, the master 

regulator of heat shock induction, led to accelerated aging and life span reduction, while 

HSF1 overexpression promoted longevity and reduced cytotoxic protein aggregation.46 

Moreover, overexpression of molecular chaperones in the Hsp70 network has been 

repeatedly shown to ameliorate pathogenic protein structures associated with several 

prominent degenerative disorders.67-69 In drosophila, overexpression of Hsp70 was found 

to alleviate the neurotoxicity usually associated with abnormal polyglutamine expansion 

in protein structures linked to Machado-Joseph disease and seven other human 

neurodegenerative disorders.70 Similar research, again in D. melanogaster, found that 

engineered overexpression of human Hsp70 was able to completely prevent the drastic 

neurotoxicity otherwise observed with induced expression of α-synuclein, a protein 

implicated in the development of Parkinson’s disease.67 In multiple cellular studies, 

Hsp70 overexpression was also able to counteract the aggregation of mutant huntingtin 

proteins associated with Huntington’s disease, suppressing formation of soluble 

oligomers, and mitigating toxicity.68,69 

Skeletal Muscle: unique challenges to proteostasis 

 Skeletal muscle makes up 40-50% of the human body, and plays central roles in 

physical mobility, protein storage, and metabolic homeostasis, which extend the 

fundamental importance of this tissue to general health, longevity, and quality of 

life.52,66,71 Muscle tissue also presents a number of unique challenges to protein 

management systems, not the least of these being the cell-wide stressors provoked by 
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exercise.52 Physical activity can rapidly expend local energy substrate, while 

simultaneously generating heat, mechanical damage, reactive oxygen species (ROS), and 

pH shifts, all of which act in concert to produce widespread protein denaturement.52,72 

Moreover, muscle tissue remains capable of enormous adaptive plasticity throughout 

adulthood, demanding wholesale remodeling of cell-wide protein architecture, while 

intramuscular protein catabolism provides a responsive pool of amino acids available for 

organism-wide emergency energy provision and crucial anabolic reactions.34,72,73  

 The normal performance of these important functions depends in large part on the 

protein management systems, which mop up or refurbish damaged proteins following 

exercise, degrade available protein to provide substrate for anabolic adaptation or 

catabolic energy production, and generally facilitate the complex proteostatic 

maintenance of this particularly protein-centered tissue.34,52  

 A growing number of investigations have empirically demonstrated that both heat 

shock and autophagic processes can be strongly induced by the stress of acute exercise in 

animals,57,74-78 and humans.79-84 Somewhat surprisingly, other projects have failed to 

observe increased expression of major markers relating to these processes, such as LC3 

and Hsp70, following acute exercise,85-88 with research providing indications of a 

differential response in these proteostatic systems according to tissue type,89,90 and 

exercise intensity.91,92  

Summary 

 Given the apparent importance of these proteostatic mechanisms to general health 

and longevity, it seems clear that developing a more comprehensive understanding of 
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their operation and regulation will help provide crucial insights into numerous formidable 

pathologies, and may even eventually illuminate the fundamental aging process.3,4,47,49,70 

 The upregulation of proteostatic systems in response to exercise also offers an 

intriguing mechanistic connection to the health and longevity benefits often associated 

with routine exercise, 93 while providing a unique opportunity to observe the interplay of 

these systems in response to routine cellular insult, potentially shedding light on 

regulatory pathways.10 

 It seems clear that further efforts to illuminate the individual roles and cooperative 

interaction of these proteostatic systems are strongly warranted, and investigators may be 

able to gain valuable insight through observing the unified action of these pathways as 

they manage a dynamic proteostatic balance through the complexly evolving demands of 

acute exercise and subsequent transition to recovery and repair. 
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Chapter 2 
 

Introduction 
 

 Proteins play a critical role in nearly every biological activity, and intracellular 

homeostasis depends in large part on the ability of regulatory systems to sustain the 

quality and function of these diverse, structurally complex macromolecules.3,4 

Dysregulation of these systems can have serious consequences, and investigations into a 

number of challenging, progressive pathologies have become increasingly concentrated 

on the mechanisms by which healthy protein ecosystems are able to maintain an adaptive, 

functional equilibrium in the face of acute and chronic cellular stress.3,4,50,51,94  

 Unraveling these mechanisms is a daunting task, as perpetuating the operational 

status quo of intracellular protein systems is accomplished through a fluctuating cycle of 

synthesis, maintenance, and elimination involving numerous interactive pathways and 

hundreds of individual proteins.2-4 The importance of the task is difficult to overstate, 

however, as this tightly-regulated network of protein management systems ultimately 

influence almost every aspect of cellular function, overseeing the conformational 

integrity, interactive capability, physical location, overall concentration, and timely 

catabolism of the individual proteins upon which functionality depends.3,4 This 

formidable level of regulatory oversight is fundamentally necessitated by the intricacy, 

delicacy, and diversity of protein species; as well as the dynamic environment in which 

they operate, and the complexly evolving needs of the physiological system they 

support.3,4  
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Basic Concepts 

 Proteins are synthesized in linear polypeptide chains, requiring complex folding 

maneuvers in order to attain the specific 3-dimensional conformation required for normal 

function.5,7 Cellular stress can also damage and deform successfully folded proteins, 

which then must re-attain a stable, ‘native’ configuration to resume proper function.5,7 

Misfolded or transitional protein states often expose unshielded hydrophobic regions, 

which increases risk of damaging non-native interaction with nearby structures, and 

promotes aggregation.5,7  

 Considering the logistical importance of these nascent forms achieving functional 

status, and the danger to nearby molecules that intermediate protein conformations can 

represent; it is not surprising that a network of ancillary molecules has developed to help 

smooth progress through the transitional phases of protein folding, while intracellular 

proteolytic systems have been established to sequester and destroy aberrant proteins and 

cytotoxic aggregate structures.4,26 Stabilization and proper folding of damaged and de 

novo proteins is overseen by the molecular chaperones,4 while intracellular proteolysis is 

accomplished through the coordinated efforts of the ubiquitin−proteasome system (UPS), 

and the lysosome-dependent autophagic processes.30 Regulatory control of these systems 

is complex, dynamic, and only partially understood, though mounting evidence suggests 

that cross-talk between these protein management pathways plays an important role in 

maintaining proteostasis.4,10,22,30,37,80 

Protein Management Systems 

 The molecular chaperones, as a class, are any of a structurally unrelated group of 

proteins found to interact with partially-folded intermediate proteins to limit aggregation, 
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enhance stability, or otherwise facilitate a correct progression to the native state without 

becoming incorporated in the final structure.4 A number of these chaperones, often called 

heat shock proteins (HSPs) are transcriptionally induced by denaturing forms of cellular 

stress leading to an increased intracellular concentration of damaged proteins, in what has 

been termed the heat shock response (HSR).20,21 The critical importance of this ancient 

pathway is underscored by its universal distribution in known organisms, and the 

conferred ability to stabilize complicated protein structures has been implicated as an 

evolutionary capacitor.9,11,19 In modern mammalian cells, approximately 20-30% of all 

proteins seem to be incapable of correct de novo folding without the assistance of these 

facilitators.4 

 Despite the best efforts of these molecular chaperones, many damaged proteins 

cannot be successfully refolded, and the safe disposal of these structures becomes a 

priority. To accomplish this, the autophagic pathways operate in conjunction with the 

ubiquitin−proteasome system (UPS), to coordinate the intracellular degradation of 

terminally damaged proteins or organelles and aggregated protein structures, as well as 

the timely removal of proteins playing a transient regulatory capacity, or found to be in 

surplus.26,27,30 These pathways are each tightly controlled, with abnormal activity being 

linked to a spectrum of pathology, from myopathies and neurodegenerative diseases, to 

diabetes, cancer formation, and immune dysfunction.26,50,51,94 

 The ubiquitin−proteasome system operates selectively to individually target 

misfolded or malformed proteins through a molecular tagging system, whereas autophagy 

is able to degrade larger protein aggregates and organelles, often in a less specific 

fashion.32 Additionally, while autophagic systems reduce protein substrate to individual 
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amino acids, the UPS pathway renders proteins into short (3-25 AA) peptide sequences, 

which may later undergo further lysosomal degradation.31  

 The umbrella term autophagy can be applied to numerous distinct, lysosome-

dependent cellular processes playing different roles in protein catabolism.26 These 

processes are novel in comparison to the primordial chaperones, and are only known to 

exist in eukaryotic cytoplasm, though they are ubiquitous in Eukaryota.33 Currently three 

primary types of autophagy pathways are best characterized, these being more 

specifically described as macroautophagy, microautophagy, and chaperone-mediated 

autophagy.26,34 

 Macroautophagy is a bulk catabolic process, which operates by engulfing a 

portion of the cytoplasm in a double-membraned vesicle called an autophagosome.33,34,37 

Engulfment then leads to indiscriminate degradation of the autophagosome and its 

contents when this structure subsequently fuses with a specialized organelle containing 

catabolic enzymes, called a lysosome.34,37 The high capacity of this pathway is ideally 

suited for urgent, short-term energy provision, and macroautophagy is upregulated during 

even relatively brief periods of nutrient deprivation (1-3 hours), as well as during periods 

cellular stress, being crucial in the removal of large, pathogenic protein aggregates, 

damaged organelles, or even invading microbes.33,34  

 Though microautophagy remains the most mysterious of the major autophagic 

pathways, the process appears capable of both bulk and selective substrate uptake, and is 

characterized by a direct invagination of the lysosomal membrane, which encloses a 

small portion of the nearby cytosol to form a self-contained ‘endosome’ that is then 

degraded along with its constituents upon arrival at the lysosomal lumen.39,40 
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 Chaperone-mediated autophagy (CMA) is a more selective process, in which 

individual proteins are targeted through specific amino acid motifs, and delivered directly 

to the lysosome by the molecular chaperone Hsc70 (HSPA8), where a binding with 

LAMP-2 precipitates transport across the lysosomal membrane.26,38 This system is also 

capable of regulatory modulation in a manner similar to the UPS, through selective 

degradation of specific regulatory proteins.38 

 Macroautophagy is the most common and best characterized of the autophagic 

processes, and will serve as the focus of following sections, being referred to hereafter 

simply as autophagy.33,37 

Implications for Health and Disease 

 Successfully navigating proteostatic challenges proves critical to normal growth 

and development, as mice bred without the ability to express vital autophagy-related 

proteins like Atg5 and Atg7 die within days of birth.53,54 Mice born with defects 

specifically preventing autophagy in skeletal muscle experience severe muscle wasting, 

with muscle fibers exhibiting disorganized muscle structure, alongside an assemblage of 

protein aggregates and damaged or defective organelles, the accumulation of which 

eventually leads to cell death.55-57  

 In humans, devastating myopathies have been traced to genetic defects impairing 

the muscular autophagic pathways, with Danon disease precipitated by a lack of LAMP-

2,61,64 Pompe disease caused by the lack of a key lysosomal enzyme,62,65 and XMEA (X-

linked myopathy with excessive autophagy) tied to deficient activity in lysosomal 

hydrolases.63 Moreover, a typical age-related decline in autophagic activity has been 
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linked to sarcopenia, the inevitable loss of skeletal muscle mass with age,47,66 while 

enhanced autophagy may directly promote longevity.48,49 

 Similarly, animal models show that inhibition of HSF1, the transcription factor 

responsible for stress-induced molecular chaperones, leads to accelerated aging, while 

HSF1 overexpression promotes longevity.46 Additionally, overexpression of heat shock 

proteins in the 70 kDa (Hsp70) network, which is regulated by HSF1, have been shown 

to ameliorate both pathogenic protein oligomers associated with Huntington’s disease, 

and protein aggregates related to Parkinson’s disease, in cell and animal models.67-69 

Skeletal Muscle: unique challenges to proteostasis 

 Proteostatic mechanisms have a particularly important role in post-mitotic cells 

such as neurons and skeletal muscle fibers, as these cells are finite in adult mammals, and 

their survival depends on the ability to control protein quality.34,52 This is of fundamental 

importance to whole-body homeostasis, as skeletal muscle is the most abundant tissue in 

mammals, making up 40-50% of the human body, and serves a central role in health, 

function, and metabolic regulation.52,66,71  

 Muscle tissue also presents a number of unique challenges to these protein 

management systems, not the least of these being the cell-wide stressors provoked by 

exercise, which can rapid expend local energy substrate, while simultaneously generating 

heat, mechanical damage, reactive oxygen species (ROS), and pH shifts leading 

widespread protein denaturement.52,72 Moreover, muscle tissue remains capable of 

enormous adaptive plasticity throughout adulthood, demanding wholesale remodeling of 

cell-wide protein architecture, while muscular protein catabolism provides a responsive 
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pool of amino acids for organism-wide emergency energy provision and crucial anabolic 

reactions.34,72,73  

Regulatory Interactions 

 Transcriptional control of stress-inducible chaperones has been traced to so called 

heat shock factors (HSFs).9,20 Of these, HSF1 appears to be the primary regulator of 

stress-induced heat shock response.9,20 In an elegant negative feedback loop, HSF1 is 

held inert in the cytosol during routine cellular operation by the very chaperones it helps 

to regulate.9,20 As stress denatured proteins attract Hsp90 and Hsp70 away from inactive 

complexes with HSF1 monomers, the monomers are released into the cytosol.9,20 HSF1 

monomers then trimerize and progress to the nucleus, where the trimer is modified and 

activated, initiating transcription of numerous HSP genes, including those responsible for 

Hsp70 and Hsp90.9,20 As the concentration of damaged proteins diminishes, unoccupied 

Hsp70 and Hsp90 begin to accumulate, eventually binding and inactivating HSF1.9,20 

 Transcriptional control of autophagy is currently thought to be regulated by a 

complex series of interactive metabolic signaling pathways, ultimately overseen by 

protein kinase B (Akt), and adenosine monophosphate-activated protein kinase (AMPK) 

through their downstream effectors, mammalian target of rapamycin (mTOR), and FoxO 

(forkhead box O proteins).42,43 Akt responds to growth factors such as insulin and insulin-

like growth factor 1 (IGF-1), and generates signals favoring anabolism and energy 

expenditure.43 Conversely, AMPK is sensitive to nutrient sensitivity, and activates 

pathways favoring catabolism and energy conservation.44 These regulators can be thought 

of as acting in coordinated opposition to maintain a careful balance between protein 

synthesis and degradation in response to continuously fluctuating metabolic signals.10   
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Interactive Pathways: coordination and control 

 Recent evidence suggests that the comparatively ancient molecular chaperones 

are able to directly influence autophagic activity through Hsp70-induced phosphorylation 

of Akt, leading to a downregulation of autophagy, Figure 6.80 In cell models, 

overexpression of Hsp70 lead to increased concentrations of phosphorylated Akt, and 

prevented normal activation of autophagy during caloric restriction, while HSF1 

blockade intensified autophagic activity.80 Other researchers have shown that 

overexpression of Hsp70 can also directly downregulate FoxO3a,22 which is known to 

Figure 6: Schematic overview of Hsp70 participation in the regulation of autophagy  
Green lines indicate activation, red lines indicate inhibition. 

Graphic reprinted from Dokladny et al., 2015.10  
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oversee autophagy induction in vivo,24,45 and operates downstream of Akt.43 Preliminary 

comparative analysis of the time-course response in autophagic and heat shock systems 

following exercise also supports a model of regulatory coordination between these two 

proteostatic systems.10  

 Observation of this interplay led researchers to propose that these two systems 

provide an integrated response to the proteostatic challenges posed by exercise.10 As a 

unique instigator of both damaging cellular stress and generative adaptation, physical 

exercise offers a singular model through which to observe the interaction of these 

pathways in the metabolic transition from catabolism to anabolism.10 Clearly, the 

autophagic systems play a critical role in recycling expendable proteins for energetic 

catabolism during exercise, as well as in cleansing the cell of damaged protein structures 

in the immediate post-exercise window; however, these destructive processes must soon 

be attenuated to allow a successful transition into adaptive restoration and remodeling. As 

such, the suggested model posits that Hsp70 acts as a molecular switch following 

physical activity, manifesting a shift in regulatory dominance away from the cleansing 

catabolic processes, and toward the restorative influence of Akt-mediated anabolism.10 

 A number of investigations have demonstrated that both the HSR and autophagic 

processes can be strongly induced by the stress of acute exercise in animals,57,74-78 and   

humans.79-84 Somewhat surprisingly, other projects have failed to observe increased 

expression of major markers relating to these processes, such as microtubule-associated 

protein 1 light chain 3 (LC3) and Hsp70, following acute exercise,85-88 with research 

providing indications of a differential response in these proteostatic systems according to 

tissue type,89,90 and exercise intensity.91,92  
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 In order to further explore the time-course response of these systems following 

acute exercise, we undertook a systematic review of the literature in an effort to 

illuminate the individual roles and cooperative interaction of these systems in managing a 

dynamic proteostatic balance through the complexly evolving demands of acute exercise 

and subsequent transition to recovery and repair. 

 This project supplements previous work by incorporating research from rodent 

models to augment available human data, and by providing a detailed analysis of the 

impact of exercise intensity. Metabolic equivalents of task (METs) were assigned to each 

exercise performed in human research, and METhours were calculated based on the 

duration of activity, allowing us to compare the correlation between various measures of 

intensity and the magnitude of proteostatic responses. Despite limited available data, an 

exploration of tissue-specific responses was also attempted.  
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Chapter 3 
 

Methods 
 
Literature Search 

 Published, peer-reviewed data germane to this project was accumulated using 27 

electronic research repositories including Medline, PubMed, ScienceDirect, Wiley Online 

Library, and Worldcat databases. The following keywords were used to search, alone or 

in various combinations including Boolean commands: acute, exercise, physical activity, 

autophagy, macroautophagy, heat shock, LC3, Atg1, Hsp, Hsp70, Hsp72. Article titles 

were then manually evaluated for relevance, with the full text of propitious selections 

downloaded and reviewed to determine if all necessary inclusion criteria had been met. 

Articles selected for inclusion were then cross-referenced in an attempt to uncover any 

pertinent research not otherwise revealed in the electronic search process. Data sets from 

individual articles were then cross-checked for originality. In cases where multiple 

articles had been published based on the same set of data, a single selection was made 

based on completeness of the information presented, and the duplicates were 

subsequently disregarded. 

Study Selection 

 Only peer-reviewed articles presenting original research and published in the 

English language prior to May, 2015, were considered for inclusion in this project. 

Available research from all healthy human and rodent subjects was utilized, with no set 

limits on age, sex, or training status. Focus was primarily on skeletal muscle, though 

limited available research prompted the inclusion of data from cardiac muscle, as well as 

PBMCs (peripheral blood mononuclear cells). Intracellular expression of Hsp70 was used 

as an indicator of the stress-inducible heat shock response, while expression of the 
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mammalian Atg1 homologue, LC3, was used as an index of autophagic activity. In order 

to help shed light on the time course of these responses following acute exercise, 

minimum necessary data for inclusion in this project consisted of a baseline measure of 

Hsp70 or LC3, as well as at least one measure of the same variable recorded at a reported 

time subsequent to a single, quantified bout of physical activity, and otherwise unaffected 

by the research intervention.  

Variables Considered 

 The primary variables considered in this project were LC3, Hsp70 (70 kDa or 72 

kDa, intracellular only), the duration of exercise performed, the intensity of exercise 

performed (in approximated METs), and a combinatory measure representing both the 

duration and intensity of exercise (METhours). Normalized phosphatidylethanolamine-

conjugated LC3 (LC3-II) was the primary measure available in existing autophagy 

research,57,74,75,79-81,87,95-97 though the ratio of conjugated to unconjugated (LC3-II/LC3-I) 

was also used in several included projects.57,85,98 

METs and METhours: fixing intensity 

 Metabolic equivalents of task (METs) are a measure of exercise intensity 

corresponding to a volumetric rate of oxygen consumption (VO2). 1 MET is generally 

accepted to represent VO2 = 3.5 ml/kg/min, and is intended to approximate a basal or 

resting level of metabolic activity.99,100 MET values for human subjects were estimated 

by comparing available descriptions of the exercise performed with published data 

regarding oxygen consumption during physical activity of similar modality and intensity, 

largely located through the Compendium of Physical Activities.101 Descriptions of the 

exercise protocol utilized in each study included in this project can be found alongside 
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estimated MET values, and the specific reference used to estimate METs, in Tables 1 - 4, 

located in the appendix (p. 59-68). METhours were then calculated by straightforward 

multiplication of the estimated METs and the reported exercise duration, as such:  

METs * exercise duration (h) = METhours.100  

 Animal subjects were separated into high or low intensity groupings based on 

natural lines of separation apparent in the data, essentially representing a separation 

between the animals that were exercised to exhaustion, and those that were not. Divisions 

between intensity groupings in human data were based on estimated METhours, 

separated into 50% or 25% increments of the estimated METhour range, according to 

data availability. 

Statistics and Analyses 

 To homogenize data for a pooled comparative analysis, all post-exercise measures 

of Hsp70 and LC3 were converted to a percentage of their corresponding baseline 

measures [(post measure / baseline) * 100]. The temporal progression of Hsp70 and 

LC3 responses following exercise was then established, by plotting the data against time 

from initiation of exercise according to various grouping strategies. The time course 

response of autophagic and heat shock systems was then estimated by fitting a parabolic 

trendline to each resulting plot, with the starting point set to 100 (our homogenized 

baseline).  

 In an effort to clarify which aspect of physical exercise is most important to the 

induction of heat shock and autophagic activity, correlations were explored between the 

magnitude of Hsp70 and LC3 responses and the available measures of exercise intensity, 

namely METs, METhours, and exercise duration. To examine the heat shock response, 
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correlations with each intensity measure were performed for all human Hsp70 data 

collected in the first 24 and 48 hours post-exercise, in order to capture the projected 

upslope of heat shock activity. Regarding the autophagic response, correlations with each 

intensity measure were limited to the maximal measured autophagy per study group, in 

an effort to equalize the impact of each individual study, given the small set of available 

research projects.  

 All figures were developed and correlations performed using Microsoft Excel 

(Microsoft Office Excel for Mac 2011; Seattle, WA, USA).  
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Chapter 4 
 

Results 
 

Study Characteristics 

 Regarding research in humans, 6 autophagy articles, with 104 total subjects (men 

= 85, women = 19),79-81,85,87,95 and 28 heat shock articles, with 265 total subjects (men = 

228, women = 37),12,80,82-84,86,88,103-122,124,125 were identified as meeting inclusion criteria, 

with one article exploring both, see ref 80.80 An additional 6 articles investigating 

autophagy,57,74,75,96-98 as well as 19 articles examining heat shock,76-78,89,126-140 were 

identified as meeting inclusion criteria with data from research in rodents. A full list of 

these articles alongside the primary variables extracted can be found in Tables 1 - 4 in 

the appendix (p. 59-68). 

Time Course Responses 

Figure 7: Projected time course of autophagic and the heat shock activity following acute 
exercise in humans.  

Autophagy time to peak: 25.4 h; peak amplitude: 194%  
Heat shock time to peak: 100.5 h; peak amplitude: 240% 

The X-axis indicates time from the start of exercise, representing the sum, in hours, of the reported 
exercise duration and period of time until post-exercise data collection; the Y-axis represents the 
relative intensity of HSP70 protein expression or LC3 protein expression. Each point indicates a 

mean group measure of expressed LC3 or Hsp70 proteins reported by a single study at the 
corresponding time, normalized to baseline. 
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 As indicated by measures of expressed LC3 and Hsp70 proteins, the projected 

time course of autophagic and heat shock activity following acute exercise in humans can 

be seen in Figure 7. Similarly, time course projections for autophagy and heat shock 

processes following acute exercise in rodents can be seen in Figure 8, again based on 

measures of expressed LC3 and Hsp70 proteins. Two studies reporting unusually high 

Hsp70 measures in rodents post-exercise (1,000-6,000% baseline) were excluded as 

outliers.89,138 

 

 In humans, the response of both autophagic and heat shock systems to acute 

exercise seemed to vary by tissue type, with the induced expression of both LC3 and 

Hsp70 tending to be higher in PBMCs than muscle tissue, as can be seen for autophagy in 

Figure 9, and heat shock systems in Figure 10.   

Figure 8: Projected time course of autophagic and the heat shock activity following acute 
exercise in rodents.  

Autophagy time to peak: 4.7 h; peak amplitude: 182%  
Heat shock time to peak: 30.1 h; peak amplitude: 231% 

The X-axis indicates time from the start of exercise, representing the sum, in hours, of the reported 
exercise duration and period of time until post-exercise data collection; the Y-axis represents the 
relative intensity of HSP70 protein expression or LC3 protein expression. Each point indicates a 

mean group measure of expressed LC3 or Hsp70 proteins reported by a single study at the 
corresponding time, normalized to baseline. 
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Figure 9: Indications of a differential autophagic response in humans by tissue type. 
The X-axis indicates time from the start of exercise, representing the sum, in hours, of the 
reported exercise duration and period of time until post-exercise data collection; the Y-axis 

represents the relative intensity of LC3 protein expression. Each point indicates a mean group 
measure of expressed LC3 protein reported by a single study at the corresponding time, 

normalized to baseline. 

Figure 10: Indications of a differential heat shock response in humans by tissue type. 
The X-axis indicates time from the start of exercise, representing the sum, in hours, of the 
reported exercise duration and period of time until post-exercise data collection; the Y-axis 
represents the relative intensity of Hsp70 protein expression. Each point indicates a mean 

group measure of expressed Hsp70 protein reported by a single study at the corresponding 
time, normalized to baseline. 



www.manaraa.com

 

 
42 

 A clear differential in the magnitude of Hsp70 and LC3 induction following acute 

exercise can also be observed according to the intensity of the exercise performed. 

Figure 11 represents LC3 data from both animals and humans, divided into high and low 

intensity groups. In both rodents and humans, higher intensity exercise was seen to elicit 

higher levels of LC3 expression. 

 
 
 Figure 12 provides a similar representation of Hsp70 data, which also displays an 

increased response to higher intensity exercise in both humans and rodents. Sufficient 

human data were available to further explore the scaling of heat shock induction relative 

to exercise intensity, by grouping Hsp70 according to a quartile division of the 

METhours range available in our dataset, as seen in Figure 13. 

Figure 11: Exercise intensity modulates the acute autophagic response in animals & humans 
The X-axis indicates time from the start of exercise, representing the sum, in hours, of the reported exercise 
duration and period of time until post-exercise data collection; the Y-axis represents the relative intensity of 

LC3 protein expression. Each point indicates a mean group measure of expressed LC3 protein reported by a 
single study at the corresponding time, normalized to baseline. 
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Figure 12: Exercise intensity modulates the acute heat shock response in animals & humans 
The X-axis indicates time from the start of exercise, representing the sum, in hours, of the reported exercise 

duration and period of time until post-exercise data collection; the Y-axis represents the relative intensity of Hsp70 
protein expression. Each point indicates a mean group measure of expressed Hsp70 protein reported by a single 

study at the corresponding time, normalized to baseline. 

Figure 13: Scaling of the acute heat shock response according to exercise intensity in humans 
The X-axis indicates time from the start of exercise, representing the sum, in hours, of the reported exercise 

duration and period of time until post-exercise data collection; the Y-axis represents the relative intensity of Hsp70 
protein expression. Each point indicates a mean group measure of expressed Hsp70 protein reported by a single 

study at the corresponding time, normalized to baseline. Each intensity group represents 25% of the range in 
METhours observed in this study (1.48 to 20.53 METhours). 
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Correlations with Measures of Exercise Intensity  

 METhours were found to act as the best correlate for human Hsp70 activity 

during the first 24 hours post exercise (r = 0.61), considerably outperforming either 

METs (r = 0.09), or exercise duration (r = 0.37) alone. This relationship between 

METhours and Hsp70 activity was attenuated by 48 hours post exercise (r = 0.41), but 

remained stronger than the relationship with either METs (r = 0.03), or exercise duration 

(r = 0.25) alone.  

 The maximum LC3 response reported for each study included in this project was 

also best predicted by METhours (r = 0.92), though exercise duration performed almost 

identically (r = 0.91), and both offered a sizable improvement over METs alone (r = 

0.74). These relationships were found to be significantly impacted by a single study 

involving >18 hours of nearly continuous exercise,81 with exclusion of this study from 

calculations strengthening the correlation between METhours and maximum measured 

autophagy (r = 0.97), while concomitantly weakening the relationship with exercise 

duration (r = 0.51), and improving the relationship METs alone (r = 0.83). 

 Graphical representations of these relationships can be found with other 

supplemental information in the appendix (p. 53-58). 
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Chapter 5 
 

Discussion 
 

Primary Findings 

 The results of our analysis reveal that rodents and humans display striking 

similarities in the successive peaking behavior of autophagic and heat shock systems 

following acute exercise. The time course response of these systems was considerably 

accelerated in rodents as compared to human subjects, yet the ratio of time to estimated 

peak activity for these pathways (time-to-peak autophagy : time-to-peak HSR) was 

conspicuously similar between models, at 0.16 for animals and 0.25 for humans, 

particularly given the simplistic predictive methodology employed. In addition, the 

magnitude of the projected peak activity was similar for both responses in both models, 

with projected peak autophagy reaching 182% of baseline in animals and 194% of 

baseline in humans, while peak heat shock activity was projected to reach 231% and 

240% of baseline in animals and humans, respectively. This general homogeneity across 

species lends welcome credence to the veracity of our simplistic predictive model, 

offering an indication that these rough estimations are reliable, if not altogether accurate 

in imposed symmetry. 

 Our projections reinforce the suggested regulatory model, indicating that 

autophagic activity dominates the proteostatic environment in the immediate post-

exercise window, but then diminishes rapidly as HSP expression escalates, returning to 

baseline well before peak heat shock activity. Consistency in the relationship between 

time-to-peak activity level in these systems, despite the interspecies differential in 

absolute time-to-peak activity, adds particular cogency to the proposed paradigm, as 
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enzyme kinetics are understood to vary between species,141 yet the sustained relationship 

we were able to observe helps to negate the possibility that any connection detected 

previously was an artifact of coincidental timing.  

 These analyses were also able to detect a differential in tissue-specific responses 

following exercise, particularly in Hsp70 expression. This has important ramifications for 

research attempting to extrapolate the easily-obtained data from peripheral blood-borne 

immune cells to predict proteostatic responses in muscle or other tissues, which can be 

more difficult to sample, and indicates that results from muscle tissue may not accurately 

represent proteostatic activity in immune cells. Our pooled indications of a tissue-specific 

response are in agreement with several individual projects,34,89,90 and are conceptually 

quite sensible, as the mechanism and extent of proteostatic challenges are likely to vary 

considerably from tissue to tissue, according to the nature of the insult.  

 This is particularly true with regard to exercise and skeletal muscle, as the cellular 

stress and proteostatic challenge that is imposed by exercise will vary in degree and 

localization according to the intensity and modality of the exercise performed, being 

utmost in the specific muscles, and the specific muscle fibers, most activated by a 

particular exercise.72 In support of this notion, recently published research has shown that 

exercise training leads to increased autophagy in a fiber-type specific fashion, with 

aerobic exercise training preferentially upregulating autophagy in aerobic muscle 

fibers.142  

 Indications of a divergence in proteostatic activity along these lines has important 

implications for research design and implementation, arguing for considered care in the 
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selection of tissue type and measurement location according to the nature of proteostatic 

challenge induced, and the physiological system(s) of interest. 

 The scaled response to exercise intensity that we observed in both the autophagic 

and heat shock systems has also been reported elsewhere in the literature,90,91 and, like 

the tissue-specific responses we observed, is conceptually plausible given current 

understanding of the relationships between muscle damage, anabolic stimulus,  and 

exercise intensity.143,144 Essentially, higher exercise intensities provoke a greater 

proteostatic disturbance in the activated muscle fibers by escalating production of heat, 

reactive oxygen species, and hydrogen ions, leading to increased protein damage and 

increased demand for the autophagic and heat shock pathways.72,90,91 At the same time, 

higher intensity exercise is known to produce a greater anabolic stimulus, upregulating 

muscle growth and remodeling subsequent to activity.144  

 We saw a clear distinction in the projected activity level of each proteostatic 

system according to exercise intensity in both humans and rodents, with evidence of 

layering in the Hsp70 response for human subjects according to several intensity levels, 

hinting at a titrated heat shock response. Interestingly, the low intensity grouping in 

human autophagy research was projected to experience decreased autophagic activity 

following exercise, while low intensity activity seemed more than sufficient to activate 

the heat shock response. This may indicate that the anabolic stimulus of exercise, likely 

effected through Akt/mTOR and mediated by Hsp70, was able to overwhelm the 

concomitant activation of catabolic processes like autophagy at a particular level of 

intensity, as has been suggested elsewhere.79 If verified through further research, this 
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phenomenon may be of considerable interest to athletes focused on optimizing muscular 

anabolism. 

 Regular participation in physical activity is frequently linked to benefits in health 

and longevity.93 Similarly, autophagic activity and the HSR have both also been 

independently linked to life span.46,48,49 Accordingly, the scaled upregulation of these 

systems in response to exercise of increasing intensity helps establish another plausible 

mechanistic link to the long term benefits observed with routine activity, and may help 

shed light on the dose-response relationship. In line with Selye’s general adaptation 

syndrome,145 some extreme exercise intensities may actually overwhelm available 

proteostatic mechanisms, while minimal effort activity may provoke insufficient cellular 

insult to activate these systems, with either case likely leading to suboptimal adaptation 

and exercise benefit. Indeed, recent epidemiological research suggests that the most avid 

participants in physical activity face morbidity and mortality outcomes comparable to the 

most sedentary members of the population.93 This offers evidence of an upper limit to 

exercise benefit, while the risks of chronic inactivity have long been established, and 

continue to be illuminated.146 Exercise-mediated activation of these proteostatic pathways 

offers a plausible route of inquiry into the molecular behaviors underlying these 

epidemiological observations, and may eventually help shed light on the optimal level of 

activity required to obtain certain health benefits.52 

 Given the modulating effect that exercise intensity seems to exert over autophagy 

and the HSR, the strong performance of METhours as a correlate of proteostatic 

responses has definite value for researchers developing exercise interventions intending 

to stimulate these systems. Some of the research currently available may not have been 
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able to precipitate the intended proteostatic challenge, simply because the exercise 

intervention selected proved of insufficient intensity.143 Moreover, care must be taken in 

attempting to directly compare the response of these systems from research efforts 

employing different exercise protocols. Finally, considering that our combinatory metric, 

METhours, was able to robustly outperform exercise duration and raw MET estimates as 

a correlate for both Hsp70 and autophagic activity, it is important to carefully evaluate 

both duration and absolute intensity when designing exercise protocols intended to 

stimulate these systems. 

Limitations 

LC3 as a measure of autophagic activity: 

 While the use of LC3 expression as a sole marker for autophagic activity is 

widespread in existing literature, the evaluation of this measure has come to be 

complicated by an increasing number of known limitations.147-149 The concentration of 

conjugated LC3 has been shown to correlate well with the total number of intracellular 

autophagosomes; however, a portion of this marker is also destroyed with the 

autophagosome upon reaching the lysosome, which seriously complicates the 

interpretation of measured LC3 concentrations in times autophagic flux.149 Moreover, 

LC3 has been shown to readily interact with aggregated protein structures, independent 

of autophagy.147 While some authorities have recommended using the LC3-II/LC3-I 

ratio, this method also presents difficulties, as LC3 immunoreactivity has been found to 

increase upon conjugation, leading to exaggerated comparative measures of LC3-II.149 

Unfortunately, previously published work cannot be expected reflect modern wisdom, 

and LC3 proved to be the only measure of autophagic activity with sufficient prevalence 
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in the available literature to allow a pooled analysis; however, these values and the 

resultant projections should be interpreted with care.  

Estimating intensity 

 The use of metabolic equivalents as an estimate of intensity is a widely accepted 

scientific convention with considerable known limitations. 1 MET is intended to 

approximate a standard level of resting energy consumption, though the accepted value of 

VO2 = 3.5 ml/kg/min seems to have been derived from the resting measures of a single 70 

kg, 40 year-old man.150 Subsequent research using larger groups supports the idea that 

this value is significantly lower for most people.150 Moreover, exercise intensity is 

relative to individual athletic conditioning, and modality-specific training status.100,151 

The Compendium of Physical Activities was utilized to locate the majority of research 

data used to fix intensity in this project, and the creators of the Compendium highlight 

that while the resource confers a valuable ability to estimate exercise cost for large 

groups, extrapolation cannot precisely estimate energy cost for individuals.100 Given that 

the METhours estimated in this project considerably outperformed exercise duration as a 

correlate to measurements of autophagic and heat shock activity, the value of this group 

approximation capacity seems clear. Despite this apparent utility, the estimations of 

intensity employed herein likely contain considerable inaccuracy, and our relevant 

conclusions must be cautiously interpreted. 

Combined tissues 

 It is important to note that several of our projections include combined data from 

PBMCs and muscle tissue, despite our observation that these tissues display a divergent 

magnitude in the response of proteostatic systems following exercise. In light of relative 
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scarcity, all available data was pooled for analysis in this project, and it is our hope that 

future research efforts will allow for more specifically targeted analyses. In the 

meantime, these combinatory projections are limited by the incorporated variability. 

Forced symmetry in the parabolic model 

 It is also important to understand that the basic parabolic model used herein to 

predict the activity of autophagic systems and the HSR is simplistic, reductive, and 

fundamentally acts to impose unnatural symmetry on complex biological processes. 

These projections should not be strictly interpreted, and are intended only to give a broad 

view of the focal proteostatic processes, in the hope that this will help to highlight the 

most obvious relationships, and call attention to gaps in existing research.  

Recommendations   

 Clearly, further research into the regulatory coordination of these systems seems 

warranted, and this analysis helps illuminate areas in the existing research where data are 

lacking. We found that many measurement time points for Hsp70 and LC3 following 

acute exercise are duplicated with considerable redundancy, while limited data are 

available to cast light on the behavior of these systems in the 24 to 48 hour window post-

exercise, with even less information available after 48 hours.  

 More research projects focusing on comparative activation of these systems 

following exercise of various intensities would also be helpful in determining the level of 

activity required to achieve robust activation of these systems, and animal research may 

allow us to explore an upper limit to healthy activation through physical activity. It may 

also be interesting to evaluate how exercise employing different intensities, and different 

quantities of muscle mass differentially impact the proteostatic processes in activated 
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tissues, as well as ancillary systems (e.g. vascular), that may be affected by the 

concentrated waste products of vigorous exercise. 

Conclusion 

 In summary, our pooled analysis reinforces the proposed regulatory model for 

coordination between heat shock and autophagic pathways, offering interspecies support 

for an Hsp70-moderated transition away from the presiding catabolic influence of 

autophagy in the immediate post-exercise window, eventually allowing the molecular 

chaperones to begin a phase of restoration and remodeling. This relationship has been 

demonstrated with direct humans cellular research following exercise,80 and further 

investigation into the intricacies of this regulatory coordination seems highly meritorious. 

The differential responses we observed in these two primary proteostatic systems 

according to exercise intensity and tissue of origin may also have important implications 

for research design, and perhaps eventually for exercise prescription. 
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Appendix 
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Supplemental Figure 1: Correlation between human Hsp70 protein expression  
in the 24h post-exercise window and estimated METhours 

R2 = coefficient of determination, r = Pearson product-moment correlation coefficient. 
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Supplemental Figure 2: Correlation between human Hsp70 protein expression  
in the 24h post-exercise window and estimated METs 

R2 = coefficient of determination, r = Pearson product-moment correlation coefficient. 
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Supplemental Figure 3: Correlation between human Hsp70 protein expression  
in the 24h post-exercise window and exercise duration 

R2 = coefficient of determination, r = Pearson product-moment correlation coefficient. 
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Supplemental Figure 4: Correlation between human Hsp70 protein expression  
in the 48h post-exercise window and estimated METhours  

R2 = coefficient of determination, r = Pearson product-moment correlation coefficient. 
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Supplemental Figure 5: Correlation between human Hsp70 protein expression  
in the 48h post-exercise window and estimated METs 

R2 = coefficient of determination, r = Pearson product-moment correlation coefficient. 
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Supplemental Figure 6: Correlation between human Hsp70 protein expression  
in the 48h post-exercise window and exercise duration  

R2 = coefficient of determination, r = Pearson product-moment correlation coefficient. 
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Supplemental Figure 7: Correlation between maximal human LC3 protein expression  
and estimated METhours 

R2 = coefficient of determination, r = Pearson product-moment correlation coefficient. 
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Supplemental Figure 8: Correlation between maximal human LC3 protein expression  
and estimated METS 

R2 = coefficient of determination, r = Pearson product-moment correlation coefficient. 
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Supplemental Figure 9: Correlation between maximal human LC3 protein expression  
and exercise duration 

R2 = coefficient of determination, r = Pearson product-moment correlation coefficient. 
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Supplemental Figure 10: Correlation between maximal human LC3 protein expression  
and estimated METhours  
ref 81 excluded, see p. 44 

R2 = coefficient of determination, r = Pearson product-moment correlation coefficient. 
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Supplemental Figure 11: Correlation between maximal human LC3 protein expression  
and estimated METs  

ref 81 excluded, see p. 44 
R2 = coefficient of determination, r = Pearson product-moment correlation coefficient. 
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Supplemental Figure 12: Correlation between maximal human LC3 protein expression  
and exercise duration  

ref 81 excluded, see p. 44 
R2 = coefficient of determination, r = Pearson product-moment correlation coefficient. 
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